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Energy Balance of Uniformly Accelerated Charge*t 
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Department of Physics, Israel Institute of Technology, Haifa, Israel 

If the electromagnetic field of a uniformly accelerated charge is computed 
by means of Liknard-Wiechert potentials, it is found that the result does not 
correspond to a single source. Besides the original uniformly accelerated 
charge there is also a second charge, which is spread on a plane recessing in 
the opposite direction with the velocity of light. The work performed by this 
second charge against the electromagnetic field is equal to the constant rate 
of radiation of the physical system. This resolves the old paradox of the energy 
balance of a uniformly accelerated charge, which radiates at a constant rate, 
although it undergoes no radiation reaction. 

I. INTRODUCTION 

One of the most puzzling problems of classical physics has been the energy 
balance of a uniformly accelerated charge (l-14). According to the Dirac equa- 
tion of motion (i5), a uniformly accelerated charge undergoes no radiation reac- 
tion, i.e., it does not perform work against its own electromagnetic field. On 
the other hand, a standard formula to be found in any textbook (16) implies 
that a charge will radiate whenever its acceleration does not vanish. The question 
then is: where does the radiated energy comes from? 

If the duration of the acceleration is finite, then it can easily be shown that 
the total radiated energy is equal to the total work performed against the radia- 
tion reaction (16) so that a noninstantaneous (nonlocal in time) energy balance 
can still be written (11). However, one may also ask what happens if the dura- 
tion of the acceleration is formally extended to infinity (into the distant past) 
even though this requires unrealistic boundary conditions. 

This problem is solved here in two steps. First, we compute the total energy 
of the electromagnetic field 

w = (1/87r)f(E2 + H2) 0, 

and we find that its rate of increase in the instantaneous rest frame is finite and 
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invariant, in full agreement with the standard formula for the rate of radiation 
(16) : 

dW/dt = 2e2/3a2, (2) 

where e is the charge and (Y-’ is the acceleration. (We use natural units c = 
47rto = 1.) 

The above calculation makes no reference to the Poynting theorem, and 
thereby avoids all the recent controversy about how the Poynting vector should 
be used (g-12). However, it becomes conspicuous that the energy increase does 
not come from the uniformly accelerated charge, but originates at the (finite) 
discontinuity of the electromagnetic field on a plane situated at a distance CY 
from the charge (as measured in the instantaneous rest frame of the latter). 

In the rest frame of the observer, this plane is seen recessing from the charge 
with the velocity of light, and it is found that it is endowed with a finite charge 
density. (Its total charge is -e.) It is the work performed by this second charge 
against the electromagnetic field which is equal to the constant rate of radiation oj the 
physical system. 

Finally, it is shown that this second charge can be eliminated only at the ex- 
pense of introducing an infinite discontinuity of the electromagnetic field, in- 
stead of a finite one. The latter then acts as an infinite energy reservoir and the 
energy balance is agah-though only formally-verified. 

II. TOTAL ENERGY 

The detailed calculations are lengthy but straightforward. We assume that 
the trajectory of the charge is given by 

z = (a” + t2y2, (3) 
and its Lienard-Wiechert potentials then lead to the following expression for 
the electromagnetic field (9) 

E, = e[-4a2(a’ + t2 + r2 - z2),/s3]~(z + t), 

E,. = e[8a2r.z/s3]e(z + t), 

H, = e[8a2rt/s3]0(z + t), 

E, = H, = H, = 0, 

where we have used cylindrical coordinates r& and where 
,$ = [ ( a2 + t2 - g - Z”)? + 4311’2. 

As usual, 

(4a) 

(4b) 

(4c) 

(4d) 

(5) 

= 0 x < 0, 
e(x) = $5 x = 0, (6) 

= 1 x > 0. 
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It then turns out that the total energy, as given by Eq. (1)) diverges near 
the charge. We thus introduce, as in the electrostatic case (l7), a cutoff radius 
a, as measured in the instantaneous rest frame of the charge, within which the 
field is assumed to vanish. It is readily shown that the charge distribution on 
the surface of the cutoff sphere is not spherically symmetric, but the deviation 
from symmetry is of the order of a/or, which can be made as small as we wish. 

The domain of integration for Eq. (1) is now shown by Fig. 1. The authors 
have been unable to perform the explicit integration for arbitrary t, but in the 
special case t = 0, the integration becomes much simpler and the result is 

(7) 

The first term is the familiar electrostatic energy of a charge at rest (17). The 
other terms are negligible in the limit U/CX + 0. 

The next step is the calculation of dW/dt, which can again be computed 
explicitly only for t = 0. The result, 

dW/dt = 2e2/3a2, (8) 

agrees with the standard formula for the rate of radiation (16). 

FIG. 1. The domain of integration for Eq. (1) is the nonshaded part of the diagram. The 
cutoff sphere is centered at z = ( a2 + t2)“2. Note that it must be flattened in the ratio 
a/(012 + ty, because of the Lorentz contraction. 
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III. THE PLANE OF DISCONTINUITY 

A remarkable feature of the last formula is that it is cutoff independent. This 
could have been foreseen without explicit calculations, simply by noting that 
the integrand in (1) is an even function of t, and therefore the only contribution 
to dW/dt, for t = 0, is due to the motion of the limits of integration. Moreover, 
for t = 0, the charge is at rest, so that only the motion of the plane x = -t 
contributes to dW/dt. We thus see that the radiated energy comes from the 
plane x = -t, and not from the uniformly accelerated charge. 

Let us focus our attention on that plane. First, we note that E, is discontinuous, 
so that there is a surface charge density 

u = AE,/4a = -cx&+x~ + I.‘)~, (9) 

and a corresponding current density j, = - oS( x + t) . A simple calculation 
shows that the total charge on the plane is 

JJ ardrdqb = -e, 

and the total work performed by that current is 

(10) 

- JJJ j,E,rdyd+dx = 2e2/3a2, (11) 

in agreement with (8). This resolves the energy balance puzzle. 
One may say, however, that this answer is not satisfactory because the physi- 

cal situation here is not the one that we originally intended to describe. It is 
naturally tempting to try to eliminate the second charge by placing on the plane 
z = -t an opposite charge density. 

In order to calculate its field, we recall the well known fact (see, e.g., ref. 16, 
p. 291) that when a charge moves at a very high velocity u e 1, its field is 
increased in a direction at right angles to the direction of motion in the ratio of 
(1 - uy’?, while in the direction of motion the field is decreased in the ratio 
(1 - u”). At very high velocities, the field thus resembles more and more the 
field of a plane wave. In our case, we have u = 1, and the field must have the 
form of an infinite shock wave of the type 6(x + t) . 

Symmetry arguments then lead us to 

E, = -H, = f(r)s(x + t). (12) 

(The magnitude of H+, must be equal to that of E, , since we have a plane wave, 
and the relative sign must be such that the energy flows in the --z direction.) 
The explicit value of f(r) is easily obtained by requiring the Gauss theorem to 
hold for a cylindrical slice enclosing a circle of radius r in the plane x = -t. 
Namely, we have 

JJ E&dz = 4rJJ ( -o)rdr&, (13) 
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where (T is given by (9)) whence 

j(r) = 2er/(r” + 0’). (14) 

If we now add (12) to (4b) and (4c), the result is identical with the solution 
which was obtained by Bondi and Gold (8), following a rather complicated 
limiting process. This solution, however, does not seem physically meaningful 
because of the 6 functions. For instance, no proper energy balance can be written 
for the system, because the total energy stored in the plane z = -t is infinite. 

On the other hand, the well behaved solution (4) does not correspond to a 
single uniformly accelerated charge, but to a pair of charges. We are therefore 
led to the conclusion that the Maxwell equations are incompatible with the 
existence of a single charge uniformly accelerated at all times. 
RECEIVED: May 6, 1963 
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